
THE LEBESGUE DENSITY THEOREM

In this note, we let m denote the Lebesgue measure on R.

Definition 1. Let E ⊂ R be measurable, and let x ∈ R. The density of E at x is

dE(x) := lim
ε→0

m(E ∩ [x− ε,x+ ε]

2ε

if the limit exists. If dE(x) = 1, we say that x is a density point for E. We let D(E) denote the set
of density points for E.

A density point might not belong to the set itself: the point 0 is a density point for E =R\{0}.

Example 2. Let c ∈ [0,1]; we now construct a set E such that dE(0) = c.
For any interval In = [1/(n+1),1/n], let cn ∈ In denote the point such that m([1/(n+1),cn]) =

c ·m(In). Let

E =
⋃
n≥1

[
1

n+1
,cn

]
∪
[
−cn,−

1
n+1

]
.

Note that, for any n ∈ N, we have

m(E ∩ [0,1/n]) = ∑
k≥n

m(E ∩ Ik) = ∑
k≥n

c ·m(Ik) = c ·m([0,1/n]) = c/n.,

so that m(E ∩ [−1/n,1/n]) = 2c/n. Let us fix ε ∈ (0,1) and let n ∈N such that 1/(n+1)< ε ≤
1/n. Then we have

m(E ∩ [−ε,ε])

2ε
≤ m(E ∩ [−1/n,1/n])

2/n+1
=

2c/n
2/n+1

= c
n+1

n
.

We obtain a lower bound in a similar way
m(E ∩ [−ε,ε])

2ε
≥ m(E ∩ [−1/(n+1),1/(n+1)])

2/n
= c

n
n+1

.

By the Sandwich Theorem, the limit

lim
ε→0

m(E ∩ [−ε,ε])

2ε

exists and equals c.

The density function satisfies the following properties.

Proposition 3. The following propeties hold:
(1) d /0(x) = 0 and dR(x) = 1,
(2) dEc(x) = 1−dE(x),
(3) if A⊆ B then dA(x)≤ dB(x) (whenever they exist). In particular, D(A)⊆ D(B).
(4) if m(A4B) = 0 then dA(x) = dB(x). In particular, D(A) = D(B).
(5) D(A∩B) = D(A)∩D(B).

Proof. The first 4 properties are left as an exercise. Let us prove (5).
From (3) we deduce D(A∩B)⊆ D(A)∩D(B). Let us verify the other inclusion. Let I be any

interval centered at x. Since
I \ (A∩B) = I \A∪ I \B,
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we can write
m(I)−m(I∩A∩B)≤ m(I)−m(I∩A)+m(I)−m(I∩B),

from which we obtain
m(I∩A)

m(I)
+

m(I∩B)
m(I)

−1≤ m(I∩A∩B)
m(I)

.

If x ∈D(A)∩D(B), then the limit of the left hand side above as the diameter of I goes to 0 exists
and equals 1, thus,

1≤ liminf
ε→0

m([x− ε,x+ ε]∩A∩B)
2ε

≤ 1,

which proves that x ∈ D(A∩B). �

The Lebesgue Density Theorem tells us that almost every point is a density point, more
precisely the following result holds.

Theorem 4. If E ⊂ R is measurable, then m(E4D(E)) = 0.

We will need the following lemma.

Lemma 5 (Rising Sun Lemma). Let F : [a,b]→ R be continuous and let U ⊆ (a,b) be open.
The set

UF := {x ∈U : there exists y > x s.t. (x,y)⊂U and F(x)> F(y)}
is open and hence can be expressed as a countable union of disjoint open intervals (ai,bi). Then,
F(ai)≥ F(bi).

Proof. The set UF is open since F is continuous. Let us fix one of the intervals (c,d) = (ai,bi)
as above. We show that F(x)≥ F(d) for all x ∈ (c,d).

Let
s := max{r ∈ [x,d] : F(x)≥ F(r)},

and suppose that s < d. Then, F(x)< F(d). Since s ∈ [x,d)⊂UF , there exists t > s such that
(s, t)⊂U and F(s)> F(t).

If t ≤ d, then F(x) ≥ F(s) > F(t), which contradicts the maximality of s ∈ [x,d]. If t > d,
then F(d) > F(x) ≥ F(s) > F(t), which implies that d ∈ UF , but d /∈ UF . Thus, s = d and
F(x)≥ F(d). �

We can now prove Theorem 4.

Proof of Theorem 4. We start with some preliminary reductions.
(1) It is enough to show that m(E \D(E)) = 0: since D(E)\E ⊆ Ec \D(Ec), it follows that

m(D(E)\E)≤ m(Ec \D(Ec)) = 0.
(2) Since

liminf
ε→0

m(E ∩ [x− ε,x+ ε])

2ε
≥ 1

2

(
liminf

ε→0

m(E ∩ (x,x+ ε))

ε
+ liminf

ε→0

m(E ∩ (x− ε,x))
ε

)
,

it is enough to show that

m
(

x ∈ E : liminf
ε→0

m(E ∩ (x,x+ ε))

ε
< 1
)
= 0,

and

m
(

x ∈ E : liminf
ε→0

m(E ∩ (x− ε,x))
ε

< 1
)
= 0.

We will show the first condition, the second is proved in an analogous way by symmetry.
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(3) It is enough to show that, for every n ∈ N, the set

An :=
{

x ∈ E : liminf
ε→0

m(E ∩ (x,x+ ε))

ε
< 1− 1

n+1

}
has measure zero.

Let A = An be any of the sets defined above. The function F : [−n,n]→ R defined by

F(x) = m(E ∩ (−n,x))− n
n+1

x

is continuous. Let us also notice that for any y > x we have

F(y)−F(x) = m(E ∩ (x,y))− n
n+1

(y− x).

Fix ε > 0. There exists an open set U such that A⊆U and m(U)≤ m(A)+ ε . We claim that
A⊆UF . Indeed, if x ∈ A, there exists δ > 0 sufficiently small such that x+δ ∈U and

F(x+δ )−F(x) = m(E ∩ (x,x+δ ))− nδ

n+1
<

nδ

n+1
− nδ

n+1
= 0.

Let (ai,bi) be pairwise disjoint intervals such that UF = ∪i∈N(ai,bi). By the Rising Sun Lemma,
F(ai)≥ F(bi) which implies

m(E ∩ (ai,bi))≤
n

n+1
(bi−ai).

Since A⊆ E and, as we showed, A⊆UF , we deduce

m(A)≤ ∑
i∈N

m(A∩ (ai,bi))≤ ∑
i∈N

m(E ∩ (ai,bi))≤ ∑
i∈N

n
n+1

(bi−ai) =
n

n+1
m(UF)

≤ n
n+1

m(U)≤ n
n+1

(m(A)+ ε),

which implies that m(A) ≤ nε . Since ε was arbitrary, we conclude that m(A) = 0, which
completes the proof. �


