THE LEBESGUE DENSITY THEOREM

In this note, we let m denote the Lebesgue measure on R.
Definition 1. Let E C R be measurable, and let x € R. The density of E at x is
. m(ENx—¢g,x+¢g]
d =1
£ () el—r>r(l) 2¢e

if the limit exists. If dg(x) = 1, we say that x is a density point for E. We let D(E) denote the set
of density points for E.

A density point might not belong to the set itself: the point 0 is a density point for £ =R\ {0}.

Example 2. Let ¢ € [0,1]; we now construct a set E such that dg(0) = c.
For any interval I, = [1/(n+1),1/n], let ¢, € I, denote the point such thatm([1/(n+1),cy]) =

c-m(l,). Let
1 1
E = U |:m,cn:| U |:—Cn,—m:| .
n>1
Note that, for any n € N, we have
m(EN[0,1/n]) = Z m(ENI) = Z c-m(ly) =c-m([0,1/n]) =c/n.,
k>n k>n

so that m(EN[—1/n,1/n]) =2c/n. Let us fix € € (0,1) and let n € N such that 1/(n+1) < € <
1/n. Then we have

m(EN[—¢g,¢]) < m(EN[—1/n,1/n]) _ 2¢/n _ cn+1
2¢ - 2/n+1 2/n+1 n o’
We obtain a lower bound in a similar way
m(EN|[—¢,¢g]) >m(Eﬂ[—1/(n—|—1),1/(n+1)]) . n
2e - 2/n n+1
By the Sandwich Theorem, the limit
im m(EN|[—¢,¢g])
£—0 2¢e

exists and equals c.
The density function satisfies the following properties.

Proposition 3. The following propeties hold:
(1) dp(x) =0and dg(x) =1,
(2) dEC(X) = l—dE(x),
(3) if A C B then da(x) < dp(x) (whenever they exist). In particular, D(A) C D(B).
4) if m(AAB) = 0 then da(x) = dp(x). In particular, D(A) = D(B).
(5) D(ANB) = D(A)ND(B).

Proof. The first 4 properties are left as an exercise. Let us prove (5).
From (3) we deduce D(ANB) C D(A) ND(B). Let us verify the other inclusion. Let I be any
interval centered at x. Since
I\(ANB)=I\AUI\B,
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we can write
m(l) —m(INANB) <m(l) —m(INA)+m(l) —m(INB),
from which we obtain
m(INA) m(INB) m(INANB)

m(I) m(I) - m()

If x € D(A) N D(B), then the limit of the left hand side above as the diameter of I goes to 0 exists
and equals 1, thus,

_ ANB
| < limint™(E=&X+ENANE)

£—0 2¢e
which proves that x € D(ANB). O

The Lebesgue Density Theorem tells us that almost every point is a density point, more
precisely the following result holds.

Theorem 4. If E C R is measurable, then m(EAD(E)) = 0.
We will need the following lemma.

Lemma 5 (Rising Sun Lemma). Let F: [a,b] — R be continuous and let U C (a,b) be open.
The set

Ur:={xeU : there existsy > x s.t. (x,y) CU and F(x) > F(y)}

is open and hence can be expressed as a countable union of disjoint open intervals (a;,b;). Then,
F(al-) Z F(b,’).

Proof. The set Ur is open since F is continuous. Let us fix one of the intervals (c,d) = (a;, b;)
as above. We show that F(x) > F(d) for all x € (c¢,d).

Let

s:=max{r € [x,d] : F(x)>F(r)},

and suppose that s < d. Then, F(x) < F(d). Since s € [x,d)
(s,¢) CU and F(s) > F(t).

If r <d, then F(x) > F(s) > F(t), which contradicts the maximality of s € [x,d|. If r > d,
then F(d) > F(x) > F(s) > F(t), which implies that d € Ur, but d ¢ Ur. Thus, s = d and
F(x) > F(d). O

C Up, there exists ¢t > s such that

We can now prove Theorem 4.

Proof of Theorem 4. We start with some preliminary reductions.

(1) Tt is enough to show that m(E \ D(E)) = 0: since D(E) \ E C E\ D(E®), it follows that
m(D(E)\E) <m(E°\ D(E°)) = 0.

(2) Since
E — 1 E E _
llmlnfm( m[x E,X—I—S]) Z _ llmlnfm( m<x7x+£)) +llmlnfm( m('x £,X)) ,
-0 2€ 2\ e=0 £ £—0 €

it is enough to show that

m (x € E : liminf

£—0

m(EN(x,x+¢€)) - 1) _0
c ;

and

m(xEE : liminfm(Em(z_g’x)) < 1) =0.

£—0

We will show the first condition, the second is proved in an analogous way by symmetry.



THE LEBESGUE DENSITY THEOREM 3

(3) It is enough to show that, for every n € N, the set

E 1
Ay = {er imingMEQ X +E) }

e—0 € n+1
has measure zero.

Let A = A, be any of the sets defined above. The function F': [—n,n] — R defined by

n

F(x)=m(EN(— -
() =m(E O (~m2)) ~
is continuous. Let us also notice that for any y > x we have
n
FO) = F () =m(EN (5.3) = (=),
Fix € > 0. There exists an open set U such that A C U and m(U) < m(A) + €. We claim that

A C Up. Indeed, if x € A, there exists > 0 sufficiently small such that x4+ 6 € U and

nd nd nd
Flrt0)=Fx) =m(EN(xx+0)) = = <= = =7 =

Let (a;,b;) be pairwise disjoint intervals such that Ur = U;en(a;, b;). By the Rising Sun Lemma,
F(aj) > F(b;) which implies

X

m(E N (aj,b;)) < +1(bi—ai).
Since A C E and, as we showed, A C Ur, we deduce
<ZmAﬂ ai,b <ZmEﬂ ai,b <Z a;) = ——m(Up)
ieN ieN zEN n+1
Com(U) < = (m(4) +e)
m —(m
“n+1 “n+1 ’

which implies that m(A) < ne. Since € was arbitrary, we conclude that m(A) = 0, which
completes the proof. U



